It is equivalent to compute K using the normalization `X/sqrt(sum(X^2))` in Feature Space.
References
Ah-Pine, J. (2010). Normalized kernels as similarity indices. In Advances in Knowledge Discovery and Data Mining: 14th Pacific-Asia Conference, PAKDD 2010, Hyderabad, India, June 21-24, 2010. Proceedings. Part II 14 (pp. 362-373). Springer Berlin Heidelberg. Link
Examples
dat <- matrix(rnorm(250),ncol=50,nrow=5)
K <- Linear(dat)
cosNorm(K)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 1.00000000 -0.07455420 0.04626991 0.14706929 0.10853172
#> [2,] -0.07455420 1.00000000 -0.09079827 0.06999559 0.19282377
#> [3,] 0.04626991 -0.09079827 1.00000000 0.18878683 -0.12107437
#> [4,] 0.14706929 0.06999559 0.18878683 1.00000000 -0.03161472
#> [5,] 0.10853172 0.19282377 -0.12107437 -0.03161472 1.00000000
