It is equivalent to compute K using the normalization `X/sqrt(sum(X^2))` in Feature Space.
References
Ah-Pine, J. (2010). Normalized kernels as similarity indices. In Advances in Knowledge Discovery and Data Mining: 14th Pacific-Asia Conference, PAKDD 2010, Hyderabad, India, June 21-24, 2010. Proceedings. Part II 14 (pp. 362-373). Springer Berlin Heidelberg. Link
Examples
dat <- matrix(rnorm(250),ncol=50,nrow=5)
K <- Linear(dat)
cosNorm(K)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 1.00000000 -0.05614708 0.06373532 0.1948711 0.23277438
#> [2,] -0.05614708 1.00000000 0.20718164 -0.1411817 -0.05666972
#> [3,] 0.06373532 0.20718164 1.00000000 -0.1113739 -0.11711099
#> [4,] 0.19487106 -0.14118167 -0.11137393 1.0000000 0.20354524
#> [5,] 0.23277438 -0.05666972 -0.11711099 0.2035452 1.00000000