
Package index
-
Acc() - Accuracy
-
Acc_rnd() - Accuracy of a random model
-
Boots_CI() - Confidence Interval using Bootstrap
-
BrayCurtis()Ruzicka() - Kernels for count data
-
Chi2() - Chi-squared kernel
-
Dirac() - Kernels for categorical variables
-
F1() - F1 score
-
Frobenius() - Frobenius kernel
-
Jaccard()Intersect() - Kernels for sets
-
KTA() - Kernel-target alignment
-
Kendall() - Kendall's tau kernel
-
Laplace() - Laplacian kernel
-
Linear() - Linear kernel
-
MKC() - Multiple Kernel (Matrices) Combination
-
Normal_CI() - Confidence Interval using Normal Approximation
-
Prec() - Precision or PPV
-
Procrustes() - Procrustes Analysis
-
RBF() - Gaussian RBF (Radial Basis Function) kernel
-
Rec() - Recall or Sensitivity or TPR
-
Spe() - Specificity or TNR
-
Spectrum() - Spectrum kernel
-
TSS() - Total Sum Scaling
-
aggregate_imp() - Aggregate importances
-
cLinear()Aitchison() - Compositional kernels
-
centerK() - Centering a kernel matrix
-
centerX() - Centering a squared matrix by row or column
-
cosNorm() - Cosine normalization of a kernel matrix
-
cosnormX() - Cosine normalization of a matrix
-
desparsify() - This function deletes those columns and/or rows in a matrix/data.frame that only contain 0s.
-
dummy_data() - Convert categorical data to dummies.
-
dummy_var() - Levels per factor variable
-
estimate_gamma() - Gamma hyperparameter estimation (RBF kernel)
-
frobNorm() - Frobenius normalization
-
heatK() - Kernel matrix heatmap
-
histK() - Kernel matrix histogram
-
kPCA() - Kernel PCA
-
kPCA_arrows() - Plot the original variables' contribution to a PCA plot
-
kPCA_imp() - Contributions of the variables to the Principal Components ("loadings")
-
minmax() - Minmax normalization
-
nmse() - NMSE (Normalized Mean Squared Error)
-
plotImp() - Importance barplot
-
showdata - Showdata
-
simK() - Kernel matrix similarity
-
soil - Soil microbiota (raw counts)
-
svm_imp() - SVM feature importance
-
vonNeumann() - Von Neumann entropy