Skip to contents

All functions

Acc()
Accuracy
Acc_rnd()
Accuracy of a random model
Boots_CI()
Confidence Interval using Bootstrap
BrayCurtis() Ruzicka()
Kernels for count data
Dirac()
Kernels for categorical variables
F1()
F1 score
Frobenius()
Frobenius kernel
Jaccard() Intersect()
Kernels for sets
KTA()
Kernel-target alignment
Kendall()
Kendall's tau kernel
Laplace()
Laplacian kernel
Linear()
Linear kernel
MKC()
Multiple Kernel (Matrices) Combination
Normal_CI()
Confidence Interval using Normal Approximation
Prec()
Precision or PPV
Procrustes()
Procrustes Analysis
RBF()
Gaussian RBF (Radial Basis Function) kernel
Rec()
Recall or Sensitivity or TPR
Spe()
Specificity or TNR
Spectrum()
Spectrum kernel
TSS()
Total Sum Scaling
centerK()
Centering a kernel matrix
centerX()
Centering a squared matrix by row or column
cosNorm()
Cosine normalization of a kernel matrix
cosnormX()
Cosine normalization of a matrix
desparsify()
This function deletes those columns and/or rows in a matrix/data.frame that only contain 0s.
dummy_data()
Convert categorical data to dummies.
dummy_var()
Levels per factor variable
estimate_gamma()
Gamma hyperparameter estimation (RBF kernel)
frobNorm()
Frobenius normalization
heatK()
Kernel matrix heatmap
histK()
Kernel matrix histogram
kPCA()
Kernel PCA
kPCA_arrows()
Plot the original variables' contribution to a PCA plot
kPCA_imp()
Contributions of the variables to the Principal Components ("loadings")
minmax()
Minmax normalization
nmse()
NMSE (Normalized Mean Squared Error)
plotImp()
Importance barplot
showdata
Showdata
simK()
Kernel matrix similarity
soil
Soil microbiota (raw counts)
svm_imp()
SVM feature importance
vonNeumann()
Von Neumann entropy